Vaccines, Neurodevelopment/ASD's Pt. IV

iVillage Member
Registered: 12-04-2007
Vaccines, Neurodevelopment/ASD's Pt. IV
Tue, 04-01-2008 - 11:13am

What About the Adjuvants Used in Vaccines?

While mercury has gotten all the attention, aluminum (found in most vaccines) is also a major culprit in this shocking saga. Added to most vaccine are a number of substances either used during manufacturing or designed as an immune booster (adjuvant). These include albumin, aluminum (either as aluminum hydroxide, aluminum phosphate or alum also known as aluminum potassium sulfate), various amino acids, DNA residues, egg protein, gelatin, monosodium glutamate (MSG), MRC-5 cellular protein and various antibiotics. Not listed on official lists are bacterial and viral contaminants, which can include their particulate, fragmented matter.94-99

The purpose of the aluminum compounds is to dramatically boost the immune reaction to the vaccine and make it prolonged, since some of the aluminum remains in the site of injection for years. Aluminum was first added to vaccines in 1926. Many of the other components added to the vaccines also boost immunity, especially that of undesirable components of the immune system, such as the B-cells.

Because these vaccine adjuvants are designed to produce a prolonged immune stimulation, they pose a particular hazard to the developing nervous system. Studies have shown that immune activation can last as long as two years after vaccination. This means that the brain’s microglial cells are also primed for the same length of time, and possibly longer.

A new emerging syndrome called macrophagic myofasciitis has been attributed to the aluminum adjuvant in vaccines and is especially associated with the hepatitis B vaccine and the tetanus vaccine.100 Victims of this syndrome suffer severe muscle and joint pains and severe weakness. Subsequent studies, since the syndrome was first described in France, indicate widespread, severe brain injury as well, as confirmed by MRI scanning.101,102 This brain syndrome has been described in American children as well.

It is known that aluminum accumulates in the brain and results in neurodegeneration. The evidence for a link between aluminum neurotoxicity and Alzheimer’s disease continues to grow stronger. Aluminum, like mercury, activates microglia leading to chronic brain inflammation, which is a major event in both Alzheimer’s disease and Parkinson’s disease.103-110

Flarend and co-workers studied the fate of vaccine injected aluminum in the dose approved by the FDA (0.85 mg per dose) using radiolabeled aluminum adjuvant –either aluminum hydroxide or aluminum phosphate, the two approved forms of adjuvants used in vaccines.111 They found that the aluminum was rapidly absorbed into the blood from both forms of aluminum, but that the aluminum phosphate was absorbed faster and produced tissue levels 2.9x higher than aluminum hydroxide. Blood levels of aluminum remained elevated for 28 days with both adjuvants. Elevated aluminum levels were found in the kidney, spleen, liver, heart, lymph nodes and brain.

This indicates that aluminum from vaccines is redistributed to numerous organs including brain, where it accumulates. Each vaccine adds to this tissue level of aluminum. If we calculate the total aluminum dose from 36 vaccines, we see that the total dose is 30.6 mg and not the 0.85 mg considered safe by the FDA. Of course not all this aluminum ends up in the tissues, but they will accumulate substantial amounts, especially when added to the amount from foods and drinking water. When a number of aluminum-containing vaccines are given during a single office visit, aluminum blood levels rise rapidly and to much higher levels and this elevation persist for over a month, all the time infiltrating the tissues, including the brain with aluminum.

It is also known that aluminum enhances the toxicity of mercury and that aluminum, even from other sources, increases inflammation in the body.106 The question no one seems to be asking is -does the aluminum act as a constant source of brain inflammation? Research, especially that showing aluminum-triggered microglial activation, seems to indicate it does.112 Dr. Anna, Strunecka, a professor of physiology, found that aluminum readily binds with fluoride to form fluoroaluminum and that this compound can active G-protein receptors, which controls a number of neurotransmitters, including glutamate receptors.46 Giving multiple aluminum-containing vaccines at once would raise blood and tissue levels much higher than when give separately, thus increasing brain levels as well. Fluoride in drinking water, foods and dental treatments would react with the brain aluminum, creating the neurotoxic fluoroaluminum combination. Studies have shown that fluoride also accumulates in the brain.

The Role of Mercury in Developmental Brain Damage

Mercury also activates microglia and does so in concentrations below 0.5 microgram (3 to 5 nanograms).113 This is well below the concentration seen with giving mercury-containing vaccines to children. Ethylmercury, like its cousin methylmercury, enters the brain very easily but once within the brain it is de-ethylated, forming ionic mercury (Hg+).114 There is evidence that ionic mercury is significantly more neurotoxic than organic mercury. Once it is converted, the mercury is difficult, if not impossible, to remove. Studies using monkeys demonstrated that ionic mercury is redistributed in the brain.115 These same series of studies also demonstrated that there was extensive microglial activation in the monkey’s brain and it persisted over 6 months after the mercury dosing was stopped, indicating that even when the plasma mercury disappears the brain mercury remains.116

This is important to remember when you hear from the vaccine safety promoters that new studies have shown that ethylmercury (in thimerosal) disappears from the blood within several days. Actually, the mercury leaves the plasma and enters the brain, where it is de-ethylated and remains for a lifetime. What they fail to mention is that recent studies have shown that only 7% of methylmercury is converted to ionic mercury, whereas 34% of ethylmercury is converted within a short time.117 This means that more of the most destructive form of mercury is retained in the brain following mercury-containing vaccine exposure than exposure to mercury from fish.

They also fail to mention that the vaccine-based mercury that was removed from the blood enters the stool in high concentrations, where it recirculates repetitively, meaning that with each cycle the mercury has access to the brain.

Mercury has another link to this immune/excitotoxic reaction. A number of studies have shown that mercury, in submicromolar concentrations, interferes with the removal of glutamate from the extracellular space, where it causes excitotoxicity.118-120 This removal system is very important, not only in protecting the brain but also in preventing abnormal alterations in brain formation.121 As you will recall, it is the carefully programmed rise and fall in glutamate levels in the brain that allow the brain’s pathways to develop and for proper development of its connections (called synaptogenesis).

Another way mercury damages the brain is by interfering with its energy production. The mitochondria of the neuron (the energy factory) accumulate more mercury than any other part of the cell. It is known that when you interfere with the neuron’s ability to produce energy, you greatly magnify its sensitivity to excitotoxicity, so much so that even physiological concentrations of glutamate can become excitotoxic.124,125

One of the destructive reactions of both excitotoxicity and mercury toxicity is the generation of storms of free radicals and lipid peroxidation products. Essential to the protection of brain cells is the antioxidant enzymes (catalase, glutathione peroxidase and SOD). Mercury poisons these protective enzymes.

One of the most important protective systems is the glutathione molecule, which is present in every cell in the body. Mercury dramatically lowers glutathione levels by a number of mechanisms. (See Dr. Boyd Haley’s work for more information).126 So, we see that mercury can greatly aggravate this entire destructive mechanism.

It is important to appreciate that as important as mercury is, it is not the lone essential element in this process. Rather, essential to this process is a combination of pre-existing or vaccine-induced immune dysfunction and excess immune stimulation by a crowded vaccine schedule. This is why autism will not go away, even when mercury is completely removed from all vaccines. It also important to appreciate that mercury can never be removed from the picture because of the numerous sources of mercury in our environment, such as contaminated seafood, atmospheric mercury and dental amalgam.

Why Males Are Affected More Often

One of the enigmas of autism is why it occurs in males more often than females. Actually there are a number of toxins that have this gender selectivity. Studies have shown, for example, that both mercury and monosodium glutamate (MSG) have greater neurotoxicity in males than females.127 The reason appears to be the enhancing effect of testosterone on both substances’ toxicity.128,129

Glutamate is the most abundant neurotransmitter in the brain and operates through a very complex series of receptors (3 major inotropic receptors- NMDA, AMPA and kainite receptors, and 8 metabotropic receptors). As stated, the presence of glutamate outside brain neurons, even in very small concentrations, is brain cell toxic. Because of this, the brain is equipped with a very elaborate series of mechanisms to remove glutamate quickly, primarily by utilizing glutamate uptake proteins (EAAT1-5). Mercury, aluminum, free radicals, lipid peroxidation products and inflammatory cytokines can easily damage these. 130,131

One of the important ways glutamate regulates neuron function is by allowing calcium to enter the cell and by the release of calcium within cell storage depots. When calcium (glutamate operated) channels are opened, the calcium flows in as a wave of concentrated calcium. These are referred to a calcium waves or oscillations. They regulate a number of neuron functions, one of which plays a vital role in brain development.

During brain development, the future neurons are lined up along membranes within the core of the undeveloped brain. These cells must migrate outwardly to reach their final destination and they do so by guided chemical signals mainly released by microglia and astrocytes. These trillions of connections also develop during a process called synaptogeneis, and use many of the same signals.

Studies have shown that the calcium waves cause developing brain cells to migrate, which is essential for development of the brain (it forms the architectonic structures and functional columns of the brain).132 Interestingly, testosterone also affects embryonic brain cell migration by regulating calcium waves, and mercury, probably by stimulating glutamate release, does the same thing.133 Estrogen reduces calcium oscillations and stops the migration. Other chemical signals in the brain also play a role (reelin).

If calcium oscillations are not properly regulated, that is- there are too many calcium oscillations, the brain develops abnormally. Testosterone and glutamate have an additive effect on these calcium waves. In this way, testosterone enhances the damaging effect of excessive glutamate and mercury.

Studies have shown that higher doses of MSG during brain formation can cause abnormalities of brain development that closely resemble mercury poisoning and the toxic effects of high levels of inflammatory cytokines.76 Interestingly, vaccination has been shown to significantly increase the toxicity of several other neurotoxins, so much so that they can trigger brain cell destruction or synaptic loss even when subtoxic concentrations of the toxicants are used. Testosterone aggravates this toxicity as well.

Studies of autistic children show an elevated level of androgens in most, even in female autistic children.134 In general, androgens, such as testosterone, enhance neurological injury and estrogens tend to be protective of the brain.135

The Role of the Leaky Gut Phenomenon and Food Intolerances.

Wakefield and his co-workers demonstrated a connection between the MMR vaccines and abnormal gut function in a landmark article appearing in the journal Lancet in 1998.136 In this carefully conducted study they biopsied the lining of the intestines of autistic children having GI symptoms and demonstrated lymphocytic infiltration as well as elevated levels of inflammatory antibodies and cytokines. TNF- release was particularly high from these gut-based immune cells. The entire GI tract, from the stomach to the colon, was infiltrated by these immune cells.

Subsequent studies have shown a high incidence of abdominal pain, bloating, diarrhea and constipation in children with ASD.138,139 A number of other studies have shown problems with digestive enzymes, defective detoxification, and an overgrowth of a number of pathogenic bacteria and fungi in the colon and intestine of ASD children.140,141

Not surprisingly, a few studies have shown significant improvement in behavior when ASD children are placed on diets devoid of identified food allergens.142-144 Antibodies to food components, such as casein, gliadin and gluten have also been described as well as cross-reactions between food antigens and brain components.145

One disease that closely resembles the case of ASD in terms of brain injury associated with food allergins is celiac disease, in which there is an immune sensitivity to the food components gliadin and gluten. Approximately 6% of such patients will demonstrate neurological damage, most frequently cerebellar ataxia.146 Other studies have also found seizures, cranial nerve damage, dementia and impaired frontal lobe function.147-151

Autopsy studies indicate that the most commonly found neurological damage occurs in the cerebellum, as we see in autism. Other studies have shown an immunologic cross-reactivity between gluten antibiodies and Purkinje cells in the cerebellum.144 Like the celiac cases, in autism the most intense microglia activation and neuronal loss occurred in the cerebellum. In many of the cases of autistic brains examined, virtually all of the Purkinje cells were lost.54

Studies looking for the incidence of GI symptoms in autistic children indicate that from 20% to 84% will have complaints. It is interesting to note that in the studies on celiac-related neurological problems, only 13% complained of GI symptoms, so ASD children can have gut-related brain effects without obvious GI symptoms.154

Some feel that the gliadin, casein and gluten can be converted to opioid-like substances, such as gliadomorphin and casomorphin that can produce a morphine response in the brain, leading to abnormal behavior.152 These opioids also suppress immunity and increase excitotoxicity.154 While the opioid effect exists, I feel it is the recurrent immune stimulation of primed microglia that is causing most of the damage seen in autism.155

Studies have also found frequent dysbiosis in autistic children, that is, an overgrowth of pathogenic bacteria and fungi and a loss of beneficial probiotics organisms.138 It has been demonstrated that Candida organisms can penetrate the gut wall and enter the blood stream, were they can be distributed to all tissues and organs, including the brain.156 The same is true for pathogenic bacteria and bacterial toxins. These brain implanted organisms act as continuous sources of immune stimulation, which is especially damaging to the brain because of vaccine-triggered microglia priming and/or activation occurring before the gut problem presents itself, with repeated vaccination aggravating the injury.

With each subsequent vaccination, the microglia response is enhanced because of the recurrent immune activation by food antigens and microbiological antigens. It is interesting to note that trials of antibiotic vancomycin, which is not absorbed from the gut, objectively improved the cognitive function of a number of autistic children.157 We also know that with children having celiac disease even a very small amount of the offending food can have devastating neurological effects.